[1]夏宏泉,彭梦,宋二超.岩石各向异性Biot系数的获取方法及应用[J].测井技术,2019,43(05):478-783.[doi:10.16489/j.issn.1004-1338.2019.05.007]
 XIA Hongquan,PENG Meng,SONG Erchao.Calculating Method and Application of Rock Anisotropic Biot Coefficient[J].WELL LOGGING TECHNOLOGY,2019,43(05):478-783.[doi:10.16489/j.issn.1004-1338.2019.05.007]
点击复制

岩石各向异性Biot系数的获取方法及应用()
分享到:

《测井技术》[ISSN:1004-1338/CN:61-1223/TE]

卷:
第43卷
期数:
2019年05期
页码:
478-783
栏目:
资料处理
出版日期:
2019-10-20

文章信息/Info

Title:
Calculating Method and Application of Rock Anisotropic Biot Coefficient
文章编号:
1004-1338(2019)05-0478-06
作者:
夏宏泉彭梦宋二超
(西南石油大学油气藏地质及开发工程国家重点实验室,四川成都610500)
Author(s):
XIA HongquanPENG MengSONG Erchao
(State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China)
关键词:
声波测井各向异性Biot系数弹性模量泊松比三轴压缩实验声学实验
Keywords:
acoustic logging anisotropic Biot coefficient Young’s modulus Poisson ratio triaxial compression experiment acoustical experiment
分类号:
P631.84;TE135
DOI:
10.16489/j.issn.1004-1338.2019.05.007
摘要:
为满足储层岩石力学精细评价的需要,低孔隙度低渗透率砂岩储层需要采用新的各向异性模型计算弹性模量和Biot系数。三轴压缩实验的排水法得到垂向、水平向的Biot系数几乎为0,故对于低孔隙度低渗透率的储层不能使用该法测量其Biot系数。声波实验法表明低孔隙度低渗透率岩心Biot系数为0.35~0.75,且其声速和弹性模量变化规律表明地层存在TIV各向异性。由声速实验值直接计算的垂向、水平向的Biot系数大于由刚度系数模型计算的Biot系数,但二者相差不大,证明基于刚度矩阵计算Biot系数是可行的。分析发现动态的各向异性Biot系数随着围压的增加而减小,表现出明显的围压依赖性。水平向的弹性模量、声波速度大于垂向的弹性模量、声波速度,而垂向的Biot系数大于水平向的Biot系数,这说明波速和动态弹性模量的各向异性转化为Biot系数的各向异性。引入各向异性Biot系数建立了地应力计算新模型,应用表明,该模型能准确地计算水平最大、最小主应力。
Abstract:
A new anisotropic model is needed to calculate the elastic modulus and Biot coefficient of low-porosity and low-permeability sandstone reservoirs to meet the need of fine evaluation of reservoir rock mechanics. The vertical and horizontal Biot coefficients are almost zero from the drainage method for triaxial compression experiments, so the reservoir with low porosity and permeability cannot be measured by this method. The Biot coefficient of cores with low porosity and permeability is 0.35-0.75 from acoustic experiments, and the laws of sonic velocity and elastic modulus indicate TIV anisotropic formation. The vertical and horizontal Biot coefficients calculated by acoustic experiment data are larger than the Biot coefficients calculated by the stiffness coefficient model, but the difference is small, indicating that it is feasible to calculate the Biot coefficient based on the stiffness matrix. Analysis proves that the static and dynamic anisotropic Biot coefficients decrease with increasing confining pressure, and they are very dependent on confining pressure. The vertical Young’s modulus and acoustic velocity are smaller than the horizontal Young’s modulus and acoustic velocity, while the vertical Biot coefficient is greater than the horizontal Biot coefficient, which indicates that the anisotropy of sonic velocity and elastic modulus is converted to the anisotropy of Biot coefficient. According to the conclusions above, a new model has been established with an anisotropic Biot coefficient to calculate formation stress. Applications have proved that the model can accurately calculate horizontal maximum and minimum principal stresses.

参考文献/References:


[1]程远方, 程林林, 黎慧. 不同渗透性储层Biot系数测试方法研究及其影响因素分析 [J]. 岩石力学与工程学报, 2015(增刊2): 3998-4004.
[2]李忠平, 周文, 谢润成. Biot系数非线性解释初探及其在井壁稳定性分析中的应用 [J]. 石油钻采工艺, 2012, 34(1): 39-42.
[3]徐欣, 王伟. 中孔中渗砂岩储层Biot系数测试方法对比研究 [J]. 石油钻探技术, 2018, 46(2): 109-114.
[4]NUR A, BYERLEE J D. An extract effective stress law for elastic deformation of rock with fluids [J]. Journal of Geophysical Research, 1971, 76(26): 6414-6419.
[5]TERZAGHI K. Erdbaumechanik auf bodenphysikalischer grundlage [M]. Leipzig and Vienna: Franz Deuticke, 1925: 1-399.
[6]BIOT M A. General theory of three dimensional consolidation [J]. Journal of Applied Physics, 1941, 12(2): 155-164.
[7]BIOT M A, WILLIS D F. The elastic coefficients of the theory of consolidation [J]. Journal of Applied Mechanics, 1957, 24(4): 594-601.
[8]葛洪魁, 韩德华, 陈颙. 砂岩孔隙弹性特性的试验研究 [J]. 岩石力学与工程学报, 2001, 20(3): 332-337.
[9]马中高. Biot系数和岩石弹性模量的实验研究 [J]. 石油与天然气地质, 2008, 29(1): 135-140.
[10]BIOT M A. Theory of propagation of elastic waves in a fluid saturated porous soild I low frequency range and II higher-frequency range [J]. Acoust Soc Am, 1956, 28: 168-191.
[11]GASSMANN F. About the elasticity porous media Four [J]. Company in Zurich, 1951, 96: 1-23.
[12]CARROLL M M. An effective stress law for anisotropic elastic deformation [J]. Journal of Geophysical Research, 1979, 84(B13): 7510-7512.
[13]CHENG A H-D, ABOUSLEIMAN Y, ROEGIERS J C. Review of some poroelastic effects in rock mechanics [J]. Int J Rock Mech Min Sci, 1993, 30(7): 1119-1126.
[14]KING M S. Wave velocities and dynamic elastic moduli of sedimentary rock [D]. Berkeley: University of California, Berkeley, 1964.
[15]KING M S. Static and dynamic elastic moduli of rocks under pressure [C]∥Rock Mechanics Theory and Practice. The 11th Symposium on Rock Mechanics, Somerton: W. H, 1969, 329-351.
[16]KIMENTOS T, HAROUKA A, MTAWAA B, SANER S. Experimental determination of the Biot elastic constant: application in formation evaluation (sonic porosity, rock strength, earth stresses, and sanding predictions) [C]∥Society of Petroleum Engineers, 1998.
[17]LO T W, COYNER K B, TOKSOZ M N. Experimental determination of elastic anisotropy of Berea sandstone, Chicopee shale, and Chelmsford granite [J]. Geophysics, 1986, 51(1): 164-171.
[18]SHANNON H, SCOTT G, ADAM D, et al. Anisotropic stress models improve completion design in the Baxter Shale [C]∥Society of Petroleum Engineers, Denver, 2008, 115736.
[19]史玉江, 王长胜. 西233井区长72致密油储层成因砂体测井识别 [J]. 测井技术, 2018, 42(5): 530-534.
[20]吴浩, 张春林, 纪友亮. 致密砂岩孔喉大小表征及对储层物性的控制-以鄂尔多斯盆地陇东地区延长组为例 [J]. 石油学报, 2017, 38(8): 876-887.
[21]BALANTON T L, OLSON J E. Stress magnitudes from logs: effects of tectonic strains and temperature [R]. SPE 1999, 2(1), 62-68.
[22]KATAHARA K. Lateral earth stress and strain [C]∥SEG International Exposition and 79th Annual Meeting, Houston, 2009, 2165-2169.
[23]KATAHARA K, SIMON M, RITZ E, BOITNOTT G. Integrating laboratory and field data to infer horizontal elastic strain in the Middle Bakken [C]∥SEG International Exposition and 87th Annual Meeting, Houston, 2017, 3781-3785.

相似文献/References:

[1]鞠晓东,乔文孝,赵宏林,等.新一代声波测井仪系统设计[J].测井技术,2012,36(05):507.
 JU Xiaodong,QIAO Wenxiao,ZHAO Honglin,et al.System Design of a New Accoustic Logging Tool[J].WELL LOGGING TECHNOLOGY,2012,36(05):507.
[2]陈洪海,孙志峰,王文梁,等.多功能超声波成像测井仪套损检测的实验研究[J].测井技术,2012,36(04):340.
 CHEN Honghai,SUN Zhifeng,WANG Wenliang,et al.Model Experiments on Casing Inspection with the Multifunctional Ultrasonic Imaging Logging Tool[J].WELL LOGGING TECHNOLOGY,2012,36(05):340.
[3]陈雪莲,魏周拓,王延茂.相控线阵声源在裸眼井和套管井外地层中产生的声束对比[J].测井技术,2012,36(04):352.
 CHEN Xuelian,WEI Zhoutuo,WANG Yanmao.Contrasting Beam Steering of Broadbandwidth Phasedarray in Formation Between Cased and Open Holes[J].WELL LOGGING TECHNOLOGY,2012,36(05):352.
[4]吴金平,乔文孝,车小花,等.声波测井压电振子温度性能一致性实验研究[J].测井技术,2012,36(02):109.
 WU Jinping,QIAO Wenxiao,CHE Xiaohua,et al.Experimental Investigation on Temperature Performance Consistency of Piezoelectric Benders Used in Acoustic Well Logging[J].WELL LOGGING TECHNOLOGY,2012,36(05):109.
[5]王瑞甲,乔文孝,鞠晓东.一种多通道声波测井信号频散分析方法[J].测井技术,2012,36(02):135.
 WANG Ruijia,QIAO Wenxiao,JU Xiaodong.A Multichannel Acoustic Logging Signal Dispersion Analysis Method[J].WELL LOGGING TECHNOLOGY,2012,36(05):135.
[6]刘继生,王克协.偶极子横波测井中井况变化对井内声场影响的理论分析[J].测井技术,1998,22(S1):11.
[7]王克协,马俊,刘继生,等.对声波测井中软地层也存在滑行横波的诠释[J].测井技术,1998,22(S1):19.
[8]余厚全,黄载禄.超声固井质量检测──小波变换对回波的分析与识别[J].测井技术,1994,18(01):8.
 Yu Houqan,Huang Zailu.Test of Cement Bond Quality-Analysis and Recognitionof ultrasonic Echo WithWavelet Transform[J].WELL LOGGING TECHNOLOGY,1994,18(05):8.
[9].声波测井在四川碳酸盐地层的试验和应用[J].测井技术,1978,02(02):1.
[10]W.H.费特尔.生产井中泥质砂岩的分析[J].测井技术,1978,02(06):53.

备注/Memo

备注/Memo:
基金项目:国家科技重大专项鄂尔多斯盆地大型低渗透岩性地层油气藏开发示范工程(2016ZX05050) 第一作者:夏宏泉,男,1965年生,博士,教授,从事测井资料的岩石力学精细解释及应用研究。E-mail:hqx3427@126.com(修改回稿日期: 2019-07-12本文编辑余迎)
更新日期/Last Update: 2019-10-20