[1]马立强,殷榕,王亮,等.准噶尔盆地头屯河组低电阻率油层束缚水饱 和度确定方法司[J].测井技术,2019,43(02):122-128.[doi:10.16489/j.issn.1004-1338.2019.02.003]
 SIMA Liqiang,YIN Rong,WANG Liang,et al.Determining Methods of the Irreducible Water Saturation of Low-resistivity Oil Layers in Toutunhe Formation, Junggar Basin[J].WELL LOGGING TECHNOLOGY,2019,43(02):122-128.[doi:10.16489/j.issn.1004-1338.2019.02.003]
点击复制

准噶尔盆地头屯河组低电阻率油层束缚水饱 和度确定方法司()
分享到:

《测井技术》[ISSN:1004-1338/CN:61-1223/TE]

卷:
第43卷
期数:
2019年02期
页码:
122-128
栏目:
处理解释
出版日期:
2019-06-20

文章信息/Info

Title:
Determining Methods of the Irreducible Water Saturation of Low-resistivity Oil Layers in Toutunhe Formation, Junggar Basin
文章编号:
1004-1338(2019)02-0122-07
作者:
马立强1 殷榕1 王亮12 王琼3 唐松4
(1.西南石油大学地球科学与技术学院, 四川 成都 610500; 2.中国石油大学地球物理与 信息工程学院, 北京 102249; 3.西南石油大学电气信息学院, 四川 成都 610500; 4.西南油气田分公司川中油气矿, 四川 遂宁 834000)
Author(s):
SIMA Liqiang1 YIN Rong1 WANG Liang12 WANG Qiong3TANG Song4
(1. College of Geosciences & Technology, Southwest Petroleum University, Chengdu, Sichuan 610500, China; 2. College of Geophysics and Information Engineering, China University of Petroleum, Beijing 102249, China; 3. College of Electrical Engineering and Information, Southwest Petroleum University, Chengdu, Sichuan 610500, China; 4. Central Sichuan Mining District, Southwest Oil and Gas Field Company, PetroChina, Suining, Sichuan 834000, China)
关键词:
测井解释 低电阻率 油层 束缚水饱和度 核磁共振 压汞 半渗透隔板 毛细管压力
Keywords:
log interpretation low-resistivity oil layer irreducible water saturation NMR mercury intrusion semi-permeable plate capillary pressure
分类号:
P631.84
DOI:
10.16489/j.issn.1004-1338.2019.02.003
文献标志码:
A
摘要:
准噶尔盆地低电阻率油层发育,高束缚水饱和度是低电阻率油层的主要成因之一; 低电阻率油层束缚水饱和度的准确确定是明确油层低电阻率成因并确定含油饱和度的关键。常用束缚水饱和度确定方法结果差异较大,束缚水饱和度的准确确定存在困难。以准噶尔盆地阜东斜坡区头屯河组储层为例,实验对比了核磁共振分析法、压汞毛细管压力曲线法、半渗透隔板毛细管压力曲线法所确定的束缚水饱和度。岩心实验结果对比表明,核磁共振分析法、压汞毛细管压力曲线法确定的束缚水饱和度均小于半渗透隔板法确定的束缚水饱和度。核磁共振分析法中实验所用离心力远大于成藏时油运移的驱替力,造成部分束缚水被离心出来; 压汞法在实验过程中,岩样中的黏土束缚水被驱替出来。这2种方法测量的束缚水饱和度均偏小。半渗透隔板法由于充分模拟了油气运移过程中非润湿相(油气)驱替润湿相(地层水)的过程,其中的黏土束缚水未被驱替,与油层实际情况相符,可用于验证另外2种方法的可靠性。
Abstract:
Low-resistivity oil layers are well developed in Junggar Basin. High irreducible water saturation is one of the main causes for low-resistivity oil layers. How to accurately determine irreducible water saturation is the key to determine the origin of low-resistivity layers and oil saturation. Different methods commonly used provide different results, so that it is hard to determine accurate irreducible water saturation. Taking the Toutunhe Formation reservoir in the Fudong slope of Junggar Basin as an example, NMR, mercury intrusion and semi-permeable plate methods were compared through core experiments, and the results indicate that the irreducible water saturation determined by either NMR or mercury intrusion is less than that determined by semi-permeable plate method. During the NMR experiment, it was found that the centrifugal force was far greater than the displacement force for oil migration during the process of hydrocarbon accumulation, which resulted in the centrifugation of some irreducible water. During the mercury intrusion experiment, the irreducible water in the clay in the rock sample was displaced. Therefore, the irreducible water saturation measured by any of the two methods is smaller than the actual. The semi-permeable plate method fully simulated the process of non-wetting phase(oil and gas)displacing wetting phase(formation water)during oil and gas migration, and the irreducible water in clay was not displaced, which is consistent with the actual situation. The semi-permeable plate method can verify the reliability of the other two methods.

参考文献/References:

[1] 李征西, 莫修文. 低电阻率油气储层测井解释方法研究 [J]. 吉林大学学报(地球科 学版), 2006(增刊2): 159-161. [2] 穆龙新, 田中元, 赵丽敏. A油田低电阻率油层的机理研究 [J]. 石油学报, 2004, 25(2): 69-73. [3] 中国石油勘探与生产公司. 渤海湾地区低电阻率油气层测井技术与解释方法论文集 [M]. 北京: 石油工业出版社, 2000. [4] ROBERT H. Cenozoic tectonic of SE Asia and Australasia [C]∥ Indonesian Petroleum Association Proceedings of the Petroleum Systems of SE Asia and Australasia Conference, 1997: 47-62. [5] 杜旭东, 顾伟康, 周开凤, 等. 低电阻率油气层成因分类和评价及识别 [J]. 世界地 质, 2004, 23(3): 255-260. [6] 罗兴平, 苏东旭, 王振林, 等. 核磁共振测井在低电阻率油层评价中的应用: 以准噶 尔盆地阜东斜坡头屯河组为例 [J]. 新疆石油地质, 2017, 38(4): 470-476. [7] 孙建孟, 陈钢花, 杨玉征, 等. 低电阻率油气层评价方法 [J]. 石油学报, 1998, 19(3): 83-88. [8] 张松扬. 识别低电阻率气层的一种特征参数判别法 [J]. 测井技术, 1995, 19(6): 428-434. [9] 欧阳健, 王贵文, 吴继余, 等. 测井地质分析与油气层定量评价 [M]. 北京: 石油工 业出版社, 1999. [10] 白玉玲, 陈满朝, 姚萍, 等. 低电阻率油气层测井解释方法研究及应用 [J]. 承德 石油高等专科学校学报, 2001, 3(3): 4-5. [11] 姚军鹏. 低电阻率砂岩气层测井评价方法及应用研究: 以川中须家河组气藏为例 [D]. 成都: 西南石油大学, 2011. [12] 黄布宙, 李舟波, 莫修文, 等. 复杂泥质砂岩储层测井解释模型研究 [J]. 石油物 探, 2009, 48(1): 40-47. [13] 中国石油勘探与生产分公司. 低电阻率油气藏测井评价技术及应用 [M]. 北京: 石 油工业出版社, 2009. [14] 欧阳健, 毛志强, 修立军, 等. 测井低对比度油层成因机理与评价方法 [M]. 北京: 石油工业出版社, 2009. [15] MAO Z Q, KUANG L C, XIAO C W, et al. Identification and evaluation of low resistivity pay zones by well logs and the petrophysical research in China [J]. Petroleum Science, 2007, 4(1): 41-48. [16] 张冲, 张超谟, 张占松, 等. 黏土束缚水对压汞毛细管压力曲线的影响及校正 [J]. 科技导报, 2014, 32(2): 44-49. [17] 龚国波, 孙伯勤, 刘买利, 等. 岩心孔隙介质中流体的核磁共振弛豫 [J]. 波谱学 杂志, 2006, 23(3): 379-395. [18] 胡法龙, 周灿灿, 李潮流, 等. 核磁共振测井构建水谱法流体识别技术 [J]. 石油 勘探与开发, 2016, 43(2): 244-252. [19] 王志战, 李新, 魏杨旭, 等. 页岩油气层核磁共振评价技术综述 [J]. 波谱学杂志, 2015, 32(4): 688-698. [20] 王志战, 许小琼. 利用核磁共振录井技术定量评价储层的分选性 [J]. 波谱学杂志, 2010, 27(2): 214-220. [21] 朱林奇, 张冲, 石文睿, 等. 结合压汞实验与核磁共振测井预测束缚水饱和度方法 研究 [J]. 科学技术与工程, 2016, 16(15): 22-29. [22] 苏俊磊, 王艳, 孙建孟. 应用可变T2截止值确定束缚水饱和度 [J]. 吉 林大学学报(地球科学版), 2010, 40(6): 1491-1495. [23] 王翼君, 唐洪明, 郑马嘉, 等. 核磁共振法表征碳酸盐岩孔隙结构及束缚水饱和度 的局限性: 基于实验分析 [J]. 海相油气地质, 2018, 23(3): 89-96. [24] LIAMBIASE J J. The framework of African rifting during the Phanerozoic [J]. Journal of African Earth Sciences, 1989, 8(2): 182-190. [25] 张有瑜. 黏土矿物与黏土矿物分析 [M]. 北京: 海洋出版社, 1990. [26] WANG L, MAO Z Q, SUN Z C, et al. Cation exchange capacity(QV) estimation in shaly sand reservoirs: case studies in the Junggar Basin, Northwest China [J]. Journal of Geophysics & Engineering, 2015, 12(5): 745. [27] 冯进, 孙友. 核磁共振测井T2截止值的确定方法 [J]. 中国海上油气, 2008, 20(3): 181-183. [28] 申辉林, 朱伟峰, 刘美杰. 核磁共振录井T2谱截止值确定方法及其适应 性研究 [J]. 录井工程, 2010, 21(2): 39-42. [29] 国家发展和改革委员会. 岩样核磁共振参数实验室测量规范: SY/6490 [S]. 2007. [30] 何更生. 油层物理 [M]. 北京: 石油工业出版社, 1994. [31] JUHASZ I. The Central role of Q2谱截止值确定方法及其适应性研究 [J]. 录井工程, 2010, 21(2): 39-42. [29] 国家发展和改革委员会. 岩样核磁共振参数实验室测量规范: SY/6490 [S]. 2007. [30] 何更生. 油层物理 [M]. 北京: 石油工业出版社, 1994. [31] JUHASZ I. The Central role of b>v and formation-water salinity in the evaluation of shaly formations [C]∥SWPLA 20th annual logging symposium, Corpus, TX, 1979.

相似文献/References:

[1]赵军龙,李甘,李传浩,等.鄂尔多斯盆地Z区长81储层流体快速识别技术研究[J].测井技术,2012,36(05):485.
 ZHAO Junlong,LI Gan,LI Chuanhao,et al.Research on the Fast Identification Technique about Fluid Property of Chang 81 Reservoirs at Z Block in Ordos Basin[J].WELL LOGGING TECHNOLOGY,2012,36(02):485.
[2]关丽.偶极子声波测井在罗家地区沙三段泥页岩储层评价中的应用[J].测井技术,2012,36(05):495.
 GUAN Li.Application of Dipole Acoustic Logging to Shale Reservoir Evaluation of Luojia Area[J].WELL LOGGING TECHNOLOGY,2012,36(02):495.
[3]赵永刚,冉利民,吴非.螺纹井眼测井曲线频域滤波校正[J].测井技术,2012,36(05):499.
 ZHAO Yonggang,RAN Limin,WU Fei.Frequency Domain Filtering Correction of Log Data from a Corkscrew Borehole[J].WELL LOGGING TECHNOLOGY,2012,36(02):499.
[4]李山生,黄质昌,杜蕊,等.WaxmanSmits模型中参数B和QV计算方法研究[J].测井技术,2012,36(03):244.
 LI Shansheng,HUANG Zhichang,DU Rui,et al.Study on Computational Methods of Parameter B and QV in WaxmanSmits Model[J].WELL LOGGING TECHNOLOGY,2012,36(02):244.
[5]陈明江,任兴国.含沥青储层的测井识别及评价[J].测井技术,2012,36(03):272.
 CHEN Mingjiang,REN Xingguo.Log Identification and Evaluation for Bitumenbearing Reservoir[J].WELL LOGGING TECHNOLOGY,2012,36(02):272.
[6]程玉梅,张小刚,魏国.介电扫描测井技术在长庆油田的应用[J].测井技术,2012,36(03):277.
 CHENG Yumei,ZHANG Xiaogang,WEI Guo.Application of Dielectric Scanner Logging in Changqing Oilfield[J].WELL LOGGING TECHNOLOGY,2012,36(02):277.
[7]孙建孟,闫国亮.渗透率模型研究进展[J].测井技术,2012,36(04):329.
 SUN Jianmeng,YAN Guoliang.Review on Absolute Permeability Model[J].WELL LOGGING TECHNOLOGY,2012,36(02):329.
[8]宋延杰,么丽娜,徐广田,等.长垣地区低孔隙度低渗透率砂岩储层中连通导电模型的应用[J].测井技术,2012,36(04):345.
 SONG Yanjie,YAO Lina,XU Guangtian,et al.Study on Connectivity Model for Low Porosity and Permeability Sand Reservoirs in Daqing Placanticline[J].WELL LOGGING TECHNOLOGY,2012,36(02):345.
[9]张丽华,潘保芝,刘思慧,等.梨树断陷东南斜坡带砂砾岩岩性识别方法研究[J].测井技术,2012,36(04):370.
 ZHANG Lihua,PAN Baozhi,LIU Sihui,et al.On Lithology Identification Methods of Glutinite in Southeast Ramp Region of Lishu Fault Depression[J].WELL LOGGING TECHNOLOGY,2012,36(02):370.
[10]张盼,冯吉坤,李雪磊,等.火山岩中CO2储层的自动识别[J].测井技术,2012,36(04):373.
 ZHANG Pan,FENG Jikun,LI Xuelei,et al.Automatic Identification of CO2Bearing Beds in the Volcanic Reservoir[J].WELL LOGGING TECHNOLOGY,2012,36(02):373.
[11]麻平社,张旭波,韩艳华,等.姬塬-白豹地区低电阻率油层成因分析及解释方法[J].测井技术,2006,30(01):84.
 MA Ping-she~(),ZHANG Xu-bo~,HAN Yan-hua~.Origin Analysis & Interpretation Method of Low Resistivity Oil Reservoir in JiyuanBaibao Zone[J].WELL LOGGING TECHNOLOGY,2006,30(02):84.
[12]王翠平,潘保芝,陈刚.利用压汞资料评价低电阻率油层含水饱和度[J].测井技术,2013,37(02):166.
 WANG Cuiping,PAN Baozhi,CHEN Gang.Evaluation of Water Saturation in Low Resistivity Reservoir Using Mercury Injection Data[J].WELL LOGGING TECHNOLOGY,2013,37(02):166.
[13]徐炳高,李阳兵,季凤玲,等.川西致密碎屑岩低电阻率气层成因分析与 测井识别[J].测井技术,2014,38(02):139.[doi:10.3969/j.issn.1004-1338.2014.02.009]
 XU Binggao,LI Yangbing,JI Fengling,et al.The Genesis Analysis and Logging Identification for Tight Clastic Rock with the Low-resistivity Gas in Western Sichuan[J].WELL LOGGING TECHNOLOGY,2014,38(02):139.[doi:10.3969/j.issn.1004-1338.2014.02.009]
[14]吴见萌,朱国璋.巨型整装孔隙-孔洞型碳酸盐岩疑难油层解析[J].测井技术,2015,39(02):175.[doi:10.16489/j.issn.1004-1338.2015.02.009]
 WU Jianmeng,ZHU Guozhang.Difficult Analyses of Porehole Type Carbonate Oil Reservoir in Giant Monoblock Oilfield[J].WELL LOGGING TECHNOLOGY,2015,39(02):175.[doi:10.16489/j.issn.1004-1338.2015.02.009]

备注/Memo

备注/Memo:
(修改回稿日期: 2019-01-08 本文编辑 余迎)基金项目: 四川盆地大型碳酸盐岩气田开发示范工程(2016ZX05052); 国家自然基金项目“页岩气储层微观孔隙结构连续定量表征与含气量评价”(41504108) 第一作者: 司马立强,男,1961年生,教授,从事油气测井方法、解释及地质应用方面的科研与教学工作。E-mail:smlq2000@126.com
更新日期/Last Update: 2019-06-20