[1]霍爱清,齐凤,朱冰.井下接收信号的改进分层阈值降噪方法[J].测井技术,2019,43(01):92-96.[doi:10.16489/j.issn.1004-1338.2019.01.017]
 HUO Aiqing,QI Feng,ZHU Bing.Improved Layered Threshold Wavelet De-noising Method for Downhole Received Signal[J].WELL LOGGING TECHNOLOGY,2019,43(01):92-96.[doi:10.16489/j.issn.1004-1338.2019.01.017]
点击复制

井下接收信号的改进分层阈值降噪方法()
分享到:

《测井技术》[ISSN:1004-1338/CN:61-1223/TE]

卷:
第43卷
期数:
2019年01期
页码:
92-96
栏目:
测井仪器
出版日期:
2019-04-20

文章信息/Info

Title:
Improved Layered Threshold Wavelet De-noising Method for Downhole Received Signal
文章编号:
1004-1338(2019)01-0092-05
作者:
霍爱清 齐凤 朱冰
(西安石油大学, 陕西 西安 710000)
Author(s):
HUO Aiqing QI Feng ZHU Bing
(Xi'an Shiyou University, Xi'an, Shaanxi 710000, China)
关键词:
井下信号 小波分析 全局阈值 分层阈值 阈值降噪
Keywords:
downhole signal wavelet analysis global threshold layered threshold threshold de-noising
分类号:
P631.84; TN911.72
DOI:
10.16489/j.issn.1004-1338.2019.01.017
文献标志码:
A
摘要:
针对旋转导向钻井中井下接收信号的噪声干扰问题,提出一种在分层阈值基础上改进阈值函数的消噪方法。分层阈值地改进保证了小波系数经阈值作用后的平滑过渡,克服了传统阈值函数带来的恒定偏差,同时具有很强的灵活性。选取不同小波进行了多尺度分解与重构实验,得到Sym6小波基降噪结果最好,失真最小。采用全局阈值、分层阈值和改进分层阈值等不同降噪算法对井下接收信号实现了降噪处理,同时特别研究了小波分解层数对降噪效果的影响,对比分析了降噪后的信噪比、均方根误差和相关系数。实验结果表明,采用Sym6小波4层改进的分层阈值法取得了最佳的降噪效果。
Abstract:
In order to solve the problem of noise interference of downhole receiving signal in rotary steerable drilling an improved noise-eliminating method by using threshold function was proposed in this paper on the basis of layered threshold. The improved layered threshold function ensured the smooth transition of the wavelet coefficients after the threshold overcome the constant deviation caused by the traditional threshold function and has a strong flexibility. The multi-scale decomposition and reconstruction experiments of different wavelet were carried out and the results show that Sym6 wavelet basis de-noising has the best effect of noise reduction and the least distortion. In addition the influence of the number of wavelet decomposition layers on the noise reduction effect was also studied in this paper and the signal-to-noise ratio mean square root error and correlation coefficient after noise reduction were compared and analyzed. The experimental results show that the optimal de-noising effect is achieved by using 4 layers of improved layered threshold method of Sym6 wavelet.

参考文献/References:


[1] 汤楠, 霍爱清, 汪跃龙, 等. 旋转导向钻井系统下行通讯接收功能的开发 [J]. 石油学报, 2010, 31(1): 157-160.
[2] 李琪, 彭元超, 张绍槐, 等. 旋转导向钻井信号井下传送技术研究 [J]. 石油学报, 2007, 28(4): 108-111.
[3] MALLAT S G. A theory for multiresolution signal decomposition: the wavelet representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-693.
[4] DONOHO D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage [J]. Biometrika, 1994, 81(12): 425-455.
[5] DONOHO D L. De-noising by soft-thresholding [J]. IEEE Transactions on Information Theory, 1995, 41(3): 613-627.
[6] JOY J, PETER S, JOHN N. Denoising using soft thresholding [J]. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 2013, 2(3): 1027-1032.
[7] BRUNO C Z, HONÓRIO, RODRIGO D, et al. Well log denoising and geological enhancement based on discrete wavelet transform and hybrid thresholding [J]. Energy, Exploration & Exploitation. 2012, 30(3): 417-434.
[8] 林坤, 马朝选, 彭晓光, 等. 基于Matlab自然伽马测井曲线小波降噪算法研究 [J]. 测井技术, 2017, 41(2): 194-198.
[9] 李红延, 周云龙, 田峰, 等. 一种新的小波自适应阈值函数振动信号去噪算法 [J]. 仪器仪表学报, 2015, 36(10): 2200-2206.
[10] 马超群, 张亚洲, 万晓玉, 等. 随钻测量系统的井下数据传输方式的研究 [J]. 西部探矿工程, 2014, 26(10): 58-60, 64.
[11] TANG N, WANG Y L, HUO A Q, et al. A downward signal processing method for rotary steerable drilling system based on signal similarity [J]. Petroleum Exploration and Development Online, 2012, 39(1): 119-126.
[12] MORTEZANEJAD R, GHOLAMI A. Optimization of wavelet-and curvelet-based denoising algorithms by multivariate SURE and GCV [J]. Journal of Geophysics and Engineering, 2016, 13(3): 378-390.
[13] 赵鸿图, 刘芳, 侯守明. 基于改进阈值函数的分数阶小波电能信号去噪 [J]. 测控技术, 2017, 36(8): 20-25.
[14] 张俊杰, 冯俞. 分层阈值电力电缆局放电信号的小波去噪研究 [J]. 电子测量技术, 2018, 41(5): 68-72.
[15] CUI Y, CHEN S J, QU M, et al. Research and application of new threshold de-noising algorithm for monitoring data analysis in nuclear power plant [J]. Journal of Shanghai Jiaotong University(Science), 2017, 22(3): 355-360.

备注/Memo

备注/Memo:
基金项目: 陕西省教育厅重点实验室科研计划项目“钻井工程的VR沉浸场景动态仿真系统研究”(17JS108); 西安石油大学研究生创新基金项目“井下接收信号的小波降噪方法研究”(YCS17212054)
第一作者: 霍爱清,女,1966年生,教授,从事智能导向钻井控制、井下通信及信号处理研究。E-mail:honeybeeqi@163.com
更新日期/Last Update: 2019-04-20