[1]徐波,汪忠浩,伍东.基于常规电测井资料的各向异性储层水平井 测井解释[J].测井技术,2018,42(06):652-657.[doi:10.16489/j.issn.1004-1338.2018.06.008]
 XU Bo,WANG Zhonghao,WU Dong.Log Interpretation of Horizontal Well in Anisotropic Reservoir Based on Wire-line Resistivity Logging[J].WELL LOGGING TECHNOLOGY,2018,42(06):652-657.[doi:10.16489/j.issn.1004-1338.2018.06.008]
点击复制

基于常规电测井资料的各向异性储层水平井 测井解释()
分享到:

《测井技术》[ISSN:1004-1338/CN:61-1223/TE]

卷:
第42卷
期数:
2018年06期
页码:
652-657
栏目:
处理解释
出版日期:
2018-12-31

文章信息/Info

Title:
Log Interpretation of Horizontal Well in Anisotropic Reservoir Based on Wire-line Resistivity Logging
文章编号:
1004-1338(2018)06-0652-06
作者:
徐波1汪忠浩2伍东3
1.长江大学工程技术学院,湖北荆州434020;2.长江大学武汉校区,湖北武汉430100; 3.中国石油长城钻探工程公司,北京100020
Author(s):
XU Bo1WANG Zhonghao2WU Dong3
1. Yangtze University College of Engineering Technology, Jingzhou, Hubei 434020, China; 2. Yangtze University Wuhan Campus, Wuhan, Hubei 430100, China; 3. CNPC Great Wall Drilling Company, Beijing 100020, China
关键词:
测井解释双岩电参数水平井各向异性阿尔奇公式电阻率饱和度
Keywords:
log interpretation double rock electrical parameters horizontal well anisotropy Archie formula resistivity saturation
分类号:
P631.84
DOI:
10.16489/j.issn.1004-1338.2018.06.008
文献标志码:
A
摘要:
水平井中,视电阻率通常会受到地层各向异性影响而不能反映地层真电阻率,进而无法准确计算储层参数。在水平井电阻率测井只有常规资料的情况下,提出了“双岩电参数法”用于水平井各向异性储层测井评价。对研究区目的层岩心在水平和垂直方向分别取心并测定相应的岩电参数,利用各向异性理论计算水平电阻率和垂直电阻率,利用阿尔奇公式分别对水平电阻率和垂直电阻率计算饱和度,两者基本接近,且与对应导眼段或直井段计算饱和度结果一致。该方法对于只有常规电测井资料的水平井测井解释评价,具有较好的实际应用效果。
Abstract:
Resistivity is a critical formation parameter in reservoir logging evaluation. In horizontal wells, the apparent resistivity is usually affected by the anisotropy of the formation and cannot reflect the true resistivity of the formation, and thus the reservoir parameters cannot be accurately calculated. In order to solve the problem, “double rock electrical parameters” is proposed for evaluation of anisotropic reservoir in horizontal well with conventional resistivity logging. For the target layer of the study area, the cores in the horizontal and vertical directions were taken and their corresponding rock and electric parameters were measured. Then, based on the anisotropy theory, the corresponding horizontal resistivity and vertical resistivity were calculated. Finally, the corresponding saturation was calculated by the Archie formula. The results show that the horizontal and vertical saturations are nearly close and consistent with the saturation results of the corresponding guide well or vertical section. This method has a good practical application effect for horizontal well logging evaluation with only conventional resistivity logging.

参考文献/References:

[1]王昌学, 储昭坦, 肖承文, 等. 井环境对阵列感应测井响应的影响分析 [J]. 地球物理学报, 2013, 56(4): 1392-1403.
[2]李戈理. 水平井阵列感应测井MIT的正反演研究 [D]. 西安: 西安石油大学, 2015.
[3]史盼盼. 水平井中的阵列感应测井响应特性研究 [D]. 西安: 西安石油大学, 2016.
[4]HOU J S, LUIS S, WU D G, et al. A new multi-frequency triaxial array inductin tool for enhancing evaluation of anisotropic formations and its field testing [C]∥SPWLA 54th Annual Logging Symposium, June 22-26, 2013, paper CCC.
[5]ANTON F, DMITRY E, FRANK S, et al. Application of triaxial induction measurements for estimation of oil saturation for complex thin-laminated Western Siberia reservoirs [C]∥The 21st World Petroleum Congress, 2014.
[6]SOFIA D, ZHOU M, LIU R. Triaxial induction tool response in 1D layered biaxial anisotropic formation [C]∥SEG 84th Annual Meeting, 2014: 643-648.
[7]DZEVAT O, ZIKRI B, MICHAEL T, et al. Triaxial induction interpretation in horizontal wells: mapping boundaries, and characterizing anisotropy and fractures [C]∥SPWLA 56th Annual Logging Symposium, July 18-22, 2015, paper I.
[8]TERUHIKO H. Direct determination of dip and anisotropy using tri-axial electric dipole logging [C]∥SEG International Exposition and the 86th Annual Meeting, 2016: 693-697.
[9]BURKAY D, WU H H, QUIREIN J. Limitations of resistivity anisotropy inversion in LWD applications [C]∥SPWLA 54th Annual Logging Symposium, June 22-26, 2013, paper MMM.
[10]唐海全, 肖红兵, 李翠, 等. 基于随钻测井的地层界面识别方法 [J]. 天然气勘探与开发, 2016, 39(4): 8-12.
[11]吴爱平. 随钻方位电磁波电阻率测井关键技术研究 [D]. 武汉: 中国地质大学, 2013.
[12]LI S J, CHEN J F, BINFORD T L Jr. Using new LWD measurements to evaluate formation resistivity anisotropy at any dip angle [C]∥SPWLA 55th Annual Logging Symposium, May 18-22, 2014, paper EEEE.
[13]WU H H, TANG Y M. True formation resistivity determination: fast and simple process to eliminate polarization horn effect on resistivity measurements using azimuthal LWD propagation tool [C]∥SPE 56th Annual Technical Conference and Exhibition of the Society of Petroleum Engineer, November 9-12, 2015, paper SPE 177965.
[14]HORSTMANN M, SUN K I, BERGER P, et al. Resistivity anisotropy and formation dip evaluation in vertical and low angle wells using LWD directional electromagnetic measurements [C]∥SPWLA 56th Annual Logging Symposium, July 18-22, 2015, paper LLLL.
[15]刘乃震, 王忠, 刘策. 基于交联线圈的随钻方位电阻率仪的地层电阻率成像仿真 [J]. 地球物理学进展, 2015, 30(6): 2897-2905.
[16]刘乃震, 王忠, 刘策. 随钻电磁波传播方位电阻率仪地质导向关键技术 [J]. 地球物理学报, 2015, 58(5): 1767-1775.
[17]岳喜洲, 马明学, 李国玉. 地层各向异性对随钻方位电阻率仪器测量信号的影响 [J]. 石油管柱与仪器, 2016, 2(6): 55-58.
[18]BELYAEVA O, PODBEREZHNYY M, ZVEREV V. First application of LWD deep-azimuthal resistivity tool and advanced data interpretation software for reservoir navigation at West Salym Field in Russia [C]∥SPE 91st Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, Cocober 24-26, 2016, paper SPE 182100.
[19]KLEIN J D. Induction log anisotropy correction [J]. The Log Analyst, 1993: 18-27.
[20]KLEIN J D, MARTIN P R. The petrophysics of electrically anisotropic reservoirs [C]∥SPWLA 36th Annual Logging Symposium, June 26-29, 1995, paper HH.
[21]ARCHIE G E. The electrical resistivity log as an aid in determining some reservoir characteristics [C]∥Transaction of the American Institute of Mining and Metallurgical Engineers, 1942: 146: 54-62.

相似文献/References:

[1]赵军龙,李甘,李传浩,等.鄂尔多斯盆地Z区长81储层流体快速识别技术研究[J].测井技术,2012,36(05):485.
 ZHAO Junlong,LI Gan,LI Chuanhao,et al.Research on the Fast Identification Technique about Fluid Property of Chang 81 Reservoirs at Z Block in Ordos Basin[J].WELL LOGGING TECHNOLOGY,2012,36(06):485.
[2]关丽.偶极子声波测井在罗家地区沙三段泥页岩储层评价中的应用[J].测井技术,2012,36(05):495.
 GUAN Li.Application of Dipole Acoustic Logging to Shale Reservoir Evaluation of Luojia Area[J].WELL LOGGING TECHNOLOGY,2012,36(06):495.
[3]赵永刚,冉利民,吴非.螺纹井眼测井曲线频域滤波校正[J].测井技术,2012,36(05):499.
 ZHAO Yonggang,RAN Limin,WU Fei.Frequency Domain Filtering Correction of Log Data from a Corkscrew Borehole[J].WELL LOGGING TECHNOLOGY,2012,36(06):499.
[4]李山生,黄质昌,杜蕊,等.WaxmanSmits模型中参数B和QV计算方法研究[J].测井技术,2012,36(03):244.
 LI Shansheng,HUANG Zhichang,DU Rui,et al.Study on Computational Methods of Parameter B and QV in WaxmanSmits Model[J].WELL LOGGING TECHNOLOGY,2012,36(06):244.
[5]陈明江,任兴国.含沥青储层的测井识别及评价[J].测井技术,2012,36(03):272.
 CHEN Mingjiang,REN Xingguo.Log Identification and Evaluation for Bitumenbearing Reservoir[J].WELL LOGGING TECHNOLOGY,2012,36(06):272.
[6]程玉梅,张小刚,魏国.介电扫描测井技术在长庆油田的应用[J].测井技术,2012,36(03):277.
 CHENG Yumei,ZHANG Xiaogang,WEI Guo.Application of Dielectric Scanner Logging in Changqing Oilfield[J].WELL LOGGING TECHNOLOGY,2012,36(06):277.
[7]孙建孟,闫国亮.渗透率模型研究进展[J].测井技术,2012,36(04):329.
 SUN Jianmeng,YAN Guoliang.Review on Absolute Permeability Model[J].WELL LOGGING TECHNOLOGY,2012,36(06):329.
[8]宋延杰,么丽娜,徐广田,等.长垣地区低孔隙度低渗透率砂岩储层中连通导电模型的应用[J].测井技术,2012,36(04):345.
 SONG Yanjie,YAO Lina,XU Guangtian,et al.Study on Connectivity Model for Low Porosity and Permeability Sand Reservoirs in Daqing Placanticline[J].WELL LOGGING TECHNOLOGY,2012,36(06):345.
[9]张丽华,潘保芝,刘思慧,等.梨树断陷东南斜坡带砂砾岩岩性识别方法研究[J].测井技术,2012,36(04):370.
 ZHANG Lihua,PAN Baozhi,LIU Sihui,et al.On Lithology Identification Methods of Glutinite in Southeast Ramp Region of Lishu Fault Depression[J].WELL LOGGING TECHNOLOGY,2012,36(06):370.
[10]张盼,冯吉坤,李雪磊,等.火山岩中CO2储层的自动识别[J].测井技术,2012,36(04):373.
 ZHANG Pan,FENG Jikun,LI Xuelei,et al.Automatic Identification of CO2Bearing Beds in the Volcanic Reservoir[J].WELL LOGGING TECHNOLOGY,2012,36(06):373.

备注/Memo

备注/Memo:
基金项目:中国石油天然气集团公司科学研究与技术开发项目“重大工程关键技术装备研究与应用”之九:随钻电磁波成像与测录井解释支持系统研发(2013E-3809) 第一作者:徐波,男,1982生,讲师,博士,从事地球物理测井相关教学和科研工作。E-mail:bopixu@126.com
更新日期/Last Update: 2018-12-31