[1]张宝录,曾蕊,杜欣睿,等.基于逆向地应力转换的煤系储层压裂层段弹性参数取值分析[J].测井技术,2018,42(04):433-438.[doi:10.16489/j.issn.1004-1338.2018.04.012]
 ZHANG Baolu,ZENG Rui,DU Xinrui,et al.Analysis on the Value of Elastic Parameters of Coal Measure Reservoir of Fractured Section Based on Reverse In-situ Stress Transformation[J].WELL LOGGING TECHNOLOGY,2018,42(04):433-438.[doi:10.16489/j.issn.1004-1338.2018.04.012]
点击复制

基于逆向地应力转换的煤系储层压裂层段弹性参数取值分析()
分享到:

《测井技术》[ISSN:1004-1338/CN:61-1223/TE]

卷:
第42卷
期数:
2018年04期
页码:
433-438
栏目:
非常规油气评价
出版日期:
2018-09-05

文章信息/Info

Title:
Analysis on the Value of Elastic Parameters of Coal Measure Reservoir of Fractured Section Based on Reverse In-situ Stress Transformation
文章编号:
1004-1338(2018)04-0433-06
作者:
张宝录 曾蕊 杜欣睿 吴思薇 苟焌迤
中国石油测井有限公司长庆分公司, 陕西 西安 710200
Author(s):
ZHANG Baolu ZENG Rui DU Xinrui WU Siwei GOU Junyi
Changqing Branch, China Petroleum Logging CO.LTD., Xi'an, Shaanxi 710200, China
关键词:
测井评价 压裂法 现今地应力 泊松比 致密砂岩 弹性参数
Keywords:
Keywords: log evaluation fracturing method current ground stress Poisson's ratio tight sandstone elastic parameter
分类号:
P631.84; P554
DOI:
10.16489/j.issn.1004-1338.2018.04.012
文献标志码:
A
摘要:
为了提高压裂层段岩石弹性参数取值的可靠度,基于逆向转换分析思路,利用压裂法确定煤系致密砂岩储层地应力大小。在考虑岩石热膨胀系数(β)基础上,利用地应力对地层岩石泊松比(ν)和弹性模量(E)进行测井评价。研究结果表明,所研究煤系致密砂岩的E和ν具有非常好的正相关性,该致密砂岩储层的β值为5×10-6/ ℃。采用常规动静态参数转换方法获取的岩石泊松比测井解释结果是可靠的,可以用于压裂段的现今地应力评价。对于弹性模量的评价结果,常规方法在全井段的可靠度均较低,仅在薄砂泥互层段界面处较为可靠。为了提高该煤系地层现今地应力的测井预测精度,建议选用包含岩石泊松比而不含弹性模量参数的地应力测井解释模型。或者采用基于逆向地应力运算检验方法对岩石弹性模量进行测井评价。该方法克服了压裂层段弹性参数取值可靠度不明的问题,提出了提高压裂层段弹性参数取值精度的方法,对指导地应力场精细测井预测具有积极意义。
Abstract:
Abstract: In order to improve the reliability of rock elastic parameters in fracturing intervals, based on the idea of reverse conversion analysis, the fracturing method is used to determine the ground stress of coal measure tight sandstone reservoir. Considering the thermal expansion coefficient(β)of the rock, the ground stress is used to conduct logging evaluation of the Poisson's ratio(ν)and elastic modulus(E)of the formation rock. The results show that the E and ν of the coal measure tight sandstone studied have a very good positive correlation. The tight sandstone reservoir has a β value of 5×10-6/ ℃. The logging interpretation of rock Poisson's ratio obtained by the conventional dynamic and static parameter conversion method is reliable and can be used for the current ground stress evaluation of the fracturing interval. For the evaluation results of the elastic modulus, the reliability of the conventional method used in the whole well is low, and it is reliable only at the interface of the interbeded thin sand mud section. To improve the logging prediction accuracy of the current ground stress of the coal measure formation, it is recommended to use the ground stress logging interpretation model including the rock Poisson's ratio but without elastic modulus. The logging evaluation of rock elastic modulus based on the inverse ground stress calculation test method could also be performed. The proposed method could address the poor reliability of and improve the accuracy of the elastic parameters of the fracturing interval, which has positive significance for guiding fine logging prediction of ground stress field.

参考文献/References:

[1] ZOBACK M D, BARYON C A, BRUDY M, et al. Determination of stress oritation and magnitude in deep wells [J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40: 1049-1076. [2] NELSON E J, MEYER J J, HILLIS R R, et al. Transverse drilling-induced tensile fractures in the west tuna area, gippsland basin, australia: implications for the in-situ stress regime [J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42: 361-371. [3] YAGHOUBI A A, ZEINALI M. Determination of magnitude and oritation of the in-situ stress from borehole breakout and effect of pore pressure on borehole stability: case study in cheshmeh khush oilfield of iran [J]. Journal of Petroleum Science and Engineering, 2009, 67: 116-126. [4] FAN X Y, GONG M, ZHANG Q G, et al. Prediction of the horizontal stress of the tight sandstone formation in eastern sulige of China [J]. Journal of Petroleum Science and Engineering, 2014, 113: 72-80. [5] ZOBACK M D, RoLLER J C. Magnitude of shear stress on the san andress fault: implications of a stress measurement profile at shallow depth [J]. Science, 1979, 26. [6] 傅宁, 杨树春, 贺清, 等. 鄂尔多斯盆地东缘临兴-神府区块致密砂岩气高效成藏条件 [J]. 石油学报, 2016, 37(增刊1): 111-120. [7] BRACE W F. Dilatancy in the fracture of crystalline rocks [J]. Journal of Geophysical Research, 1966, 71(16): 3939-3952. [8] GARDNER G H F, GARDNER L W, GREGORY A R. Formation velocity and density: the diagnostic basin for stratigraphic traps [J]. Geophysic, 1974, 39(6): 770-778. [9] ANDERSON O L. Stress corrosion theory of crack propagation with application to geophysics [J]. Review of Geophysics and Space Physics, 1977, 159(1): 78-89. [10] PICKETT. Acoustic character logs and their applications in formation evaluation [C]. SPE452, 1963: 659 -667. [11] SHEOREY P R. A Theory for in-situ stresses in isotropic and transversely isotropic rock [J]. International Journal of Rock Mechanics and Mining Sciences, 1994, 31: 23-24. [12] HAAS C J. Static stress-strain relationships [M]. New York: McGraw Hill, 1981. [13] SCHAFER K. In situ strain measurements in libya [J]. Rock Mechanics, 1980(Suppl 9): 49-60. [14] VAN K D W. Coal [M]. Amsterdam: Elsevier, 1961. [15] CASTAGNA, BATZLE, EASTWOOD. Relationships between com-pressional-wave and shear-wave velocities in clastic silicate rocks [J]. Geophysics, 50(4): 571-581. [16] HAN D H, NUR A, MORGAN D. Effects of porosity and clay content on wave velocities [J]. Geophysics, 1986, 51: 2093-2107.

相似文献/References:

[1]万金彬,李庆华,白松涛.页岩气储层测井评价及进展[J].测井技术,2012,36(05):441.
 WAN Jinbin,LI Qinghua,BAI Songtao.Welllogging Evaluation in Shale Gas Reservoir and Its Advances[J].WELL LOGGING TECHNOLOGY,2012,36(04):441.
[2]张凤生,司马立强,赵冉,等.塔河油田储层裂缝测井识别和有效性评价[J].测井技术,2012,36(03):261.
 ZHANG Fengsheng,SIMA Liqiang,ZHAO Ran,et al.Log Identification and Effectiveness Evaluation on Reservoir Fractures in Tahe Oilfield[J].WELL LOGGING TECHNOLOGY,2012,36(04):261.
[3]冯春珍,林伟川,成志刚,等.低渗透储层测井分类和产能预测技术[J].测井技术,2012,36(03):308.
 FENG Chunzhen,LIN Weichuan,CHENG Zhigang,et al.Reservoir Classification and Productivity Forecasting Method for Low Prorosity and Permeability Reservoir with Log Data[J].WELL LOGGING TECHNOLOGY,2012,36(04):308.
[4]葛祥,何传亮,朱小红,等.川东北地区陆相地层井壁稳定性测井分析[J].测井技术,2012,36(02):164.
 GE Xiang,HE Chuanliang,ZHU Xiaohong,et al.Borehole Stability Logging Analysis in Terrestrial Formation in Northeastern Sichuan[J].WELL LOGGING TECHNOLOGY,2012,36(04):164.
[5]胡瑞波,常静春,张文胜,等.歧口凹陷湖相碳酸盐岩储层岩性识别及储集类型研究[J].测井技术,2012,36(02):179.
 HU Ruibo,CHANG Jingchun,ZHAN Wensheng,et al.On Lithology Identification of Limnetic Facies Carbonate Reservoir in Qikou Sag and Its Reservoir Types[J].WELL LOGGING TECHNOLOGY,2012,36(04):179.
[6]章海宁,张翔,李国瑛,等.三塘湖盆地火山岩储层测井定量评价方法[J].测井技术,2012,36(01):24.
 ZHANG Haining,ZHANG Xiang,LI Guoying,et al.Quantitative Log Evaluation Method for Volcanic Reservoir in Santanghu Basin[J].WELL LOGGING TECHNOLOGY,2012,36(04):24.
[7]肖承文.塔里木盆地高压气藏出砂测井评价方法研究[J].测井技术,2012,36(01):41.
 XIAO Chengwen.On Sand Production Log Evaluation of Highpressure Gas Reservoir in Tarim Basin[J].WELL LOGGING TECHNOLOGY,2012,36(04):41.
[8]张丽华,潘保芝,庄华,等.低孔隙度低渗透率储层压裂后产能测井预测方法研究[J].测井技术,2012,36(01):101.
 ZHANG Lihua,PAN Baozhi,ZHUANG Hua,et al.Productivity Log Forecasting Method for Postfrac Reservoir with Low Porosity and Low Permeability[J].WELL LOGGING TECHNOLOGY,2012,36(04):101.
[9]赵江青,匡立春,刘应,等.非均质储层孔喉结构的测井评价方法[J].测井技术,1998,22(S1):60.
[10]李虎,范宜仁,丛云海,等.基于改进SADE算法的神经网络预测储层物性[J].测井技术,2012,36(06):585.
 LI Hu,FAN Yiren,CONG Yunhai,et al.A New Method Predicting Reservoir Properties with Neural Network Based on SADE Algorithm[J].WELL LOGGING TECHNOLOGY,2012,36(04):585.

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金项目硬脆/塑性泥页岩微裂缝产生的岩石物理学机制基础研究(41572130) 第一作者: 张宝录,男,1976年生,工程师,从事测井资料采集与解释工作。E-mail:speedysys@163.com
更新日期/Last Update: 2018-09-05