[1]钱赓,穆鹏飞,杨海风,等.渤海海域常压油藏实测地层压力与流体性质关系[J].测井技术,2018,42(04):377-382.[doi:10.16489/j.issn.1004-1338.2018.04.002]
 QIAN Geng,MU Pengfei,YANG Haifeng,et al.Relationship Between Measured Formation Pressure and Fluid Properties in Normal-pressure Reservoirs in the Bohai Sea[J].WELL LOGGING TECHNOLOGY,2018,42(04):377-382.[doi:10.16489/j.issn.1004-1338.2018.04.002]
点击复制

渤海海域常压油藏实测地层压力与流体性质关系()
分享到:

《测井技术》[ISSN:1004-1338/CN:61-1223/TE]

卷:
第42卷
期数:
2018年04期
页码:
377-382
栏目:
实验研究
出版日期:
2018-09-05

文章信息/Info

Title:
Relationship Between Measured Formation Pressure and Fluid Properties in Normal-pressure Reservoirs in the Bohai Sea
文章编号:
1004-1338(2018)04-0377-06
作者:
钱赓 穆鹏飞 杨海风 黄振 郑彧
中海石油(中国)有限公司天津分公司渤海石油研究院, 天津 300450
Author(s):
QIAN Geng MU Pengfei YANG Haifeng HUANG Zhen ZHENG Yu
Bohai Petroleum Research Institute, Tianjin Branch of CNOOC, Tianjin 300450, China
关键词:
电缆地层测试 实测地层压力 折算压力 单相流体 原油密度分异 压力—深度关系
Keywords:
Keywords: wireline formation test measured formation pressure conversion pressure single-phase fluid crude oil density differentiation pressure-depth relationship
分类号:
P631.84
DOI:
10.16489/j.issn.1004-1338.2018.04.002
文献标志码:
A
摘要:
研究渤海海域诸多常压油藏的连续电缆测压数据发现,油层顶部实测地层压力数据增压现象普遍表现为实测地层压力不同程度高于其等深折算压力,压力—深度线性关系存在不确定性、流体性质认识不清。将水静力学基本原理、等压面概念拓展到常压油藏“U形水银测压计”物理模型,并建立地层压力—原油密度函数关系,理论上证明地层压力与原油密度为反比关系、油层顶部增压的原因是地层原油密度相对偏低。进一步结合原油PVT与连续测压数据并证实:①原油密度分异是常压油藏油层顶部增压的关键,同时连续测压数据能够反映常压油藏单相流体密度分异特征; ②增压段(纯油区顶部)原油密度低于非增压段(中—深部),实测地层压力高于等深折算压力即出现增压; ③非增压段(纯油区中—深部)原油密度相对稳定,实测地层压力与其折算压力接近。明确常压油藏实测地层压力与流体性质关系,利于合理解释压力—深度关系、精细研究流体性质与分布规律。
Abstract:
Abstract: The study on the wireline pressure measurement data of many normal-pressue reservoirs in the Bohai Sea area found that the pressure-increase phenomenon of the measured formation pressure at the top of the oil layer was generally showed that the measured formation pressures are higher than the equivalent pressures at the same depth, the pressure-depth linear relationship uncertainty is observed and fluid properties are unclear. By applying the basic principles of hydrostatics and the isostatic surface concept to the physical model of the U-shaped mercury manometer of normal-pressure reservoir, and through establishing the relationship between formation pressure and crude oil density, it is theoretically proved that the formation pressure is inversely proportional to the density of crude oil and low crude oil density accounts for the pressure-increase of the oil layer top. Further combined with crude oil PVT and continuous pressure measurement data proved that:① The crude oil density differentiation is the key to the pressure increment of oil layer top in normal-pressure reservoirs; the continuous pressure measurement data can reveal the single-phase fluid density differentiation characteristics of normal-pressure reservoirs; ② The crude oil density in the pressure-increase section(top of the pure oil zone)is lower than that in the non-pressure-increase section(medium-deep section of the pure oil zone); the pressure-increase is confirmed if the measured formation pressure is higher than the equivalent pressure at the same depth; ③ The non-pressure-increase section(medium-deep section of the pure oil zone)has a relatively stable density, and has a close measured formation pressure and equivalent pressure at the same depth. Understanding the relationship between measured formation pressure and fluid properties in normal-pressure reservoirs is helpful for understanding pressure-depth relationship and fine study of fluid properties and distribution.

参考文献/References:

[1] 匡立春. 电缆地层测试资料应用导论 [M]. 北京: 石油工业出版社, 2005. [2] 马建国, 符仲金. 电缆地层测试器原理及其应用 [M]. 北京: 石油工业出版社, 1995. [3] DAKE L P. Fundamentals of reservoir engineering(developments in petroleum science, 8)[M]. Amsterdam: Elsevier, 1978: 1-9. [4] DAKE L P. The practice of reservoir engineering(developments in petroleum science, 36)[M]. Amsterdam: Elsevier, 1994: 51-72. [5] 钱赓, 张建民, 刘传奇, 等. 利用静压数据探讨渤海海域常压油藏砂体连通性 [J]. 石油与天然气地质, 2016, 37(4): 584-590. [6] 王向荣, 周灿灿, 王昌学, 等. 电缆地层测试器测井应用综述 [J]. 地球物理学进展, 2008, 23(5): 1579-1585. [7] 王昌学, 曹文利, 王向荣. 电缆地层测试压力梯度的计算与应用 [J]. 石油勘探与开发, 2008, 30(4): 476-481. [8] 李阳. 我国油藏开发地质研究进展 [J]. 石油学报, 2007, 28(3): 75-79. [9] 刘吉余, 郝景波, 伊万泉, 等. 流动单元的研究方法及其研究意义 [J]. 大庆石油学院学报, 1998, 22(1): 7-9, 97. [10] 张维佳. 水力学 [M]. 北京: 中国建筑工业出版社, 2008. [11] 吴持恭. 水力学 [M]. 北京: 高等教育出版社, 2008. [12] 甘肃省地质调查院. 地球科学辞典[DB/OL]. 兰州: 甘肃省地质矿产勘查开发局, 1999[2016]. http: ∥www. gsdkj. net: 81/Dict. aspx. [13] 何更生.油层物理 [M].北京:石油工业出版社, 2011. [14] 罗蛰潭. 油层物理 [M]. 北京: 地质出版社, 1985. [15] EMIL J B. Properties of petroleum reservoir fluids [M]. Boston: International Human Resources Development Corporation, 1979. [16] ABHIJIT Y D. Petroleum reservoir rock and fluid properties [M]. Boca Raton: CRC Press, Taylor & Francis Group, 2013: 93-123, 363-489. [17] ZOLTAN E H, BRIGITTE E W. Reservoir fluids [M]. Leoben: DI Claudia Scharf, 2004: 133-146. [18] WILLIAM D M JR, JOHN P S, CHRISTOPHER P L. The properties of petroleum fluids [M]. Tulsa: Penn Well Publishing Company. 1990: 257-347. [19] 王从岗, 张艳梅. 储运油料学 [M]. 北京: 中国石油大学出版社, 2006. [20] 王敏芳. 油藏地球化学研究的理论基础与发展趋势 [J]. 地质地球化学, 2003, 31(3): 47-52. [21] 朱扬明, 张敏, 徐中一. 油藏非均质性及聚油史初探 [J]. 石油实验地质, 1996(2): 162-167. [22] 李传亮. 油藏工程原理 [M]. 北京: 石油工业出版社, 2005.

相似文献/References:

[1]杨兴琴,王书南,周子皓.地层测试与井下流体取样分析技术进展[J].测井技术,2012,36(06):551.
 YANG Xingqin,WANG Shunan,ZHOU Zihao.Progresses in Formation Testing and Subsurface Fluid Sampling & Analysis Technology[J].WELL LOGGING TECHNOLOGY,2012,36(04):551.
[2]高宝善.职业测井分析家协会测井年会征文启事[J].测井技术,1993,17(04):301.
[3]袁庆波.电缆式地层测试技术在丘陵油田水淹层评价中的应用[J].测井技术,2004,28(04):352.
 YUAN Qing-bo.Application of Wireline Formation Tester(WFT) Technology to Evaluating Water-flooded Reservoir in Qiuling Oilfield[J].WELL LOGGING TECHNOLOGY,2004,28(04):352.
[4]马建国.电缆式地层测试器[J].测井技术,1984,08(04):70.
[5]运华云,于敦源,谢云,等.电缆地层测试技术在胜利滩海油气勘探中的应用[J].测井技术,2009,33(01):67.
 YUN Hua-yun,YU Dun-yuan,XIE Yun.Application of MDT to Oil-gas Exploration in Shallow Sea Shengli Oilfield[J].WELL LOGGING TECHNOLOGY,2009,33(04):67.
[6]赵立新,廖新维.电缆地层测试油气层产能预测技术研究及应用[J].测井技术,2009,33(03):284.
 ZHAO Li-xin,LIAO Xin-wei.An Approach for Reservoir Yield Prediction Using WFT and Its Applications[J].WELL LOGGING TECHNOLOGY,2009,33(04):284.
[7]孙华峰,陶果,周艳敏,等.电缆地层测试技术的发展及其在地层和油藏评价中的角色演变[J].测井技术,2010,34(04):314.
 SUN Huafeng,TAO Guo,ZHOU Yanmin,et al.The Evolutive Roles of WFT in Formation and Reservoir Evaluations[J].WELL LOGGING TECHNOLOGY,2010,34(04):314.
[8]张国栋,陈忠云,张志强.低渗透率储层流度计算改进方法探讨[J].测井技术,2016,40(01):40.[doi:10.16489/j.issn.1004-1338.2016.01.007]
 ZHANG Guodong,CHEN Zhongyun,ZHANG Zhiqiang.Mobility Calculation and Correction Methods of Formation Tester in Low-permeability Sands[J].WELL LOGGING TECHNOLOGY,2016,40(04):40.[doi:10.16489/j.issn.1004-1338.2016.01.007]

备注/Memo

备注/Memo:
基金项目: 国家科技重大专项渤海海域大中型油气田地质特征(2011ZX05023-006-002) 第一作者: 钱赓,男,1986年生,从事油气勘探与开发地质相关研究工作。E-mail:qiangeng@outlook.com
更新日期/Last Update: 2018-09-05