[1]蒋海燕,施小斌,杨小秋,等.基于BP神经网络的测井资料预测岩石热导率[J].测井技术,2012,36(03):304-307.
 JIANG Haiyan,SHI Xiaobin,YANG Xiaoqiu,et al.Prediction of Thermal Conductivity of Rocks Through Geophysical Well Logs Based on BP Neural Network[J].WELL LOGGING TECHNOLOGY,2012,36(03):304-307.
点击复制

基于BP神经网络的测井资料预测岩石热导率()
分享到:

《测井技术》[ISSN:1004-1338/CN:61-1223/TE]

卷:
第36卷
期数:
2012年03期
页码:
304-307
栏目:
综合应用
出版日期:
2012-06-29

文章信息/Info

Title:
Prediction of Thermal Conductivity of Rocks Through Geophysical Well Logs Based on BP Neural Network
作者:
蒋海燕12施小斌1杨小秋1石红才12
1.中国科学院边缘海地质重点实验室,中国科学院南海海洋研究所, 广东 广州 510301; 2.中国科学院研究生院, 北京 100049
Author(s):
JIANG Haiyan12SHI Xiaobin1YANG Xiaoqiu1SHI Hongcai12
1.Key Laboratory of Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, China; 2. Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
关键词:
测井资料 热导率 BP神经网络 大洋科学钻探
Keywords:
log date thermal conductivity BP neural network Ocean Drilling Program (ODP)
分类号:
P631.81
文献标志码:
A
摘要:
为了获取无岩心深度段的岩石热导率,建立基于BP神经网络的热导率预测模型。根据声波、密度、中子、电阻率、自然伽马等5种测井响应预测岩石热导率,其模型计算所需时间较短,不需要岩性组分资料,比只考虑1种或其中几种物理参数影响的经验公式适用范围更广。对检验样本以及位于南海的1144A井、1146A井、1148A井等 3口大洋科学钻探ODP(Ocean Drilling Program)钻孔的热导率预测结果表明,模型预测的热导率误差低于实验室岩石热导率测试的最大允许误差。该热导率预测模型为获取没有岩心的上述5种测井响应的深度段的岩石热导率提供了一种新途径。
Abstract:
In order to obtain thermal conductivity of rocks at the depth where no core is available, we build ua prediction model for thermal conductivity based on BP neural networks with sonic, density, neutron porosity, resistivity, gamma ray as input. The prediction model needs short estimating time without any more lithological composition data, therefore it has more and wider applications than the empirical formula only influenced by one or several physical parameters. The test results from the test samples and 1144A, 1146A, 1148A well logs show that the error given by our model is less than the maximum permissible error of thermal conductivity measurement under laboratory conditions. This model provides a new way for obtaining thermal conductivity of rocks at the depth where has no core but has the related geophysical well logs.

参考文献/References:

[1]Beck A E. Improved Method of Computing Thermal Conductivity of Fluidfilled Sedimentary Rocks[J].Geophysics,1976,41(1):133144.
[2]Brigaud F, Chapman D S,et al. Estimating Thermal Conductivity in Sedimentary Basins Using Lithologic Data and Geophysical Well Logs[J].AAPG BulletinAmerican Association of Petroleum Geologists,1990,74(9):14591477.
[3]Brigaud F,Vasseur G, Caillet G. Thermal State in the NorthViking Graben (North Sea) Determined from Oil Exploration Well Data[J].Geophysics,1992,57(1),6988.
[4]Demongodin L, Pinoteau B, et al. Thermal Conductivity and Well Logs——A Case Study in the Paris Basin[J].Geophysical Journal International,1991,105(3):675691.
[5]Middleton M F. Determination of Matrix Thermal Conductivity from Dry Drill Cuttings[J].AAPG BulletinAmerican Association of Petroleum Geologists,1994,78(11):17901799.
[6]王良书,熊振,郭随平,等. 利用地球物理测井资料计算油气盆地中沉积岩原地热导率[J].石油地球物理勘探,1999(34):526531.
[7]Molnar P S, Hodge D. Correlation of ThermalConductivity with Physical Properties Obtained from Geophysical Well Logs[J].AAPG BulletinAmerican Association of Petroleum Geologists,1982,66(5):608609.
[8]Vacquier V, Mathieu Y,et al. Experiment on Estimating ThermalConductivity of SedimentaryRocks from Oil Well Logging[J].AAPG BulletinAmerican Association of Petroleum Geologists,1988,72(6):758764.
[9]林治仁. 岩石热导率与声波速度的相关分析[J]. 江苏地质,1990(03): 5356.
[10]欧新功,金振民,夏斌,等. 利用超高压变质岩的P波速度估算地下岩石的热导率[J]. 地球科学,2006(04):564568.
[11]沈显杰,杨淑贞,张文仁.岩石热物理性质及其测试[M].北京:科学出版社,1988.
[12]Goutorbe B, Lucazeau F,et al. Using Neural Networks to Predict Thermal Conductivity from Geophysical Well logs[J]. Geophysical Journal International,2006,166(1):115125.
[13]HechtNielson Robert. Theory of the Back Propagation Neural Network [C]∥International Joint Conference on Neural Networks. 22 June 1989:593605.
[14]Jumikis A R. Thermal Soil Mechanics[M]. New Brunswick,N J:Rutgers University Press,1966.
[15]李舟波.钻井地球物理勘探[M]. 北京:地质出版社,2006.
[16]Griffiths C,Brereton N,et al. Thermal Conductivity Prediction from Petrophysical data:A Case Study in Geological Application of Wireline Logs Ⅱ[C]∥Geological Society,1992:299315.

相似文献/References:

[1]罗利.用测井资料计算油/气层泥浆侵入深度[J].测井技术,1998,22(S1):24.
[2]于亚娄,荆万学,杜贵彬,等.水淹层单井处理解释软件系统推广应用[J].测井技术,2000,24(S1):494.
 Yu Yalou,Jing Wanxue,Du Guibin,et al.Development and Application of Single Well Processing & Interpretation Software System for Waterflooded Strata[J].WELL LOGGING TECHNOLOGY,2000,24(03):494.
[3]宫旭东,张继红.地层应力场分布规律与油田水淹关系[J].测井技术,2000,24(S1):518.
 Gong Xudong,Zhang Jihong..Relationship between the Distribution of Formation Stress Field and Oilfield Watered out.[J].WELL LOGGING TECHNOLOGY,2000,24(03):518.
[4].碳酸盐地层测井经验交流会简况[J].测井技术,1977,01(02):1.
[5].数字测井技术介绍——测井资料的数字磁带记录(续前)[J].测井技术,1977,01(02):14.
[6]周恒涛,魏兆胜,祝孝华,等.开发测井资料在扶余油田的应用[J].测井技术,2004,28(S1):85.
 ZHOU Heng-tao,WEI Zhao-sheng,ZHU Xiao-hua,et al.Application of Development Log Data in Fuyu Oilfield[J].WELL LOGGING TECHNOLOGY,2004,28(03):85.
[7]黄作华.数字测井技术介绍(续)——测井资料的数字处理[J].测井技术,1978,02(02):49.
[8].四川碳酸盐地层测井资料的综合解释[J].测井技术,1978,02(03):1.
[9]黄作华.数字测井技术介绍——测井资料的数字处理(续)[J].测井技术,1978,02(03):34.
[10]谭廷栋.用含可动水率解释油水层的方法[J].测井技术,1978,02(04):9.

备注/Memo

备注/Memo:
作者简介: 蒋海燕,男, 1987年生,硕士研究生,从事盆地热史研究。
更新日期/Last Update: 2012-06-20