[1]刘金立,余杰,李利,等.煤储层核磁共振测量参数优化与孔隙分布精细描述[J].测井技术,2022,46(02):229-235.[doi:10.16489/j.issn.1004-1338.2022.02.017]
 LIU Jinli,YU Jie,LI Li,et al.Optimization of Nuclear Magnetic Resonance Measurement Parameters and Accurate Description of Pore Distribution in Coalbed[J].WELL LOGGING TECHNOLOGY,2022,46(02):229-235.[doi:10.16489/j.issn.1004-1338.2022.02.017]
点击复制

煤储层核磁共振测量参数优化与孔隙分布精细描述()
分享到:

《测井技术》[ISSN:1004-1338/CN:61-1223/TE]

卷:
第46卷
期数:
2022年02期
页码:
229-235
栏目:
工程应用
出版日期:
2022-05-01

文章信息/Info

Title:
Optimization of Nuclear Magnetic Resonance Measurement Parameters and Accurate Description of Pore Distribution in Coalbed
文章编号:
1004-1338(2022)02-0229-07
作者:
刘金立1 余杰23 李利3 秦瑞宝3 黄涛3 谢岚4
(1.中海油田服务股份有限公司油田技术事业部, 河北 燕郊 065201; 2.长江大学地球物理与石油资源学院, 湖北 武汉 434023; 3.中海油研究总院有限责任公司, 北京 100028; 4.中联煤层气有限责任公司, 北京 100016)
Author(s):
LIU Jinli1 YU Jie23 LI Li3 QIN Ruibao3 HUANG Tao3 XIE Lan4
(1. Oilfield Technology Branch, China Oilfield Services Limited, Yanjiao, Hebei 065201, China; 2. School of Geophysics and Petroleum Resources, Yangtze University, Wuhan, Hubei 434023, China; 3. CNOOC Research Institute CO. LTD., Beijing 100028, China; 4. Zhonglian Coalbed Methane CO. LTD., Beijing 100016, China)
关键词:
煤储层 核磁共振T2 孔径分布 孔隙度 吸附能力
Keywords:
coalbed T2 spectrum pore distribution porosity adsorption capacity
分类号:
P631.84
DOI:
10.16489/j.issn.1004-1338.2022.02.017
文献标志码:
A
摘要:
煤储层具有特殊而复杂的孔隙、裂隙网络,包含孔隙和裂缝。煤储层孔隙分布对天然气的储集性能和产气能力具有重要影响。传统的实验技术不能完全描述煤储层的孔隙分布,为了准确描述煤储层的孔隙分布,研究了回波间隔时间和极化等待时间对煤储层核磁共振T2谱和孔隙度测量的影响,明确了回波间隔时间应≤0.2 ms、极化等待时间应≥6 s才能准确描述煤储层孔隙分布。与低温氮气吸附实验相比,核磁共振T2谱测量结果弥补了对煤储层孔径大于100 nm的孔隙、裂隙的描述。并利用核磁共振T2谱转化为煤储层孔隙分布,建立了煤储层纳米孔体积与Langmuir体积、Langmuir压力的关系,由此可以利用核磁共振T2谱描述煤储层对甲烷的吸附能力。
Abstract:
Coalbed methane reservoirs has a special and complex pore-fracture network. It contains both pores and fractures. The pore structure of coal reservoirs has an important influence on gas storage and gas production capacity. The traditional experimental technology can not fully describe the pore distribution of coal. In order to accurately describe the pore distribution of coalbed, the influence of echo interval time and polarization waiting time on coalbed nuclear magnetic resonance(NMR)T2 spectrum and porosity measurement is studied. It is clear that echo interval time should be less than or equal to 0.2 ms and polarization waiting time should be greater than or equal to 6 ms to accurately describe the pore distribution of coal. Compared with the low temperature nitrogen adsorption experiment, the NMR T2 spectrum measurement results make up for the description of coalbed pore fractures with pore diameter greater than 100 nm. The relationship between nano-pore volume, Langmuir volume and Langmuir pressure of coalbed is established by using NMR T2 spectrum. Thus, NMR T2 spectrum can be used to describe the methane adsorption capacity of coalbed methane reservoir.

参考文献/References:

[1] BARRETT E P, JOYNER L G, HALENDA P P. The determination of pore volume and area distributions in porous substances I: computations from nitrogen isotherms [J]. J Am Chem Soc, 1951, 73(1): 373-380.
[2] CLARKSON C R, BUSTIN R M. The effect of pore structure and gas pressure upon the transport properties of coal: a laboratory and modeling study.1: isotherms and pore volume distributions [J]. Fuel, 1999, 78(11): 1333-1344.
[3] COATES G R, XIAO L Z, PRAMMER M G. NMR logging principles and applications [M]. Houston: Gulf Publishing Company, 1999.
[4] HODGKINS M A, HOWARD J J. Application of NMR logging to reservoir characterization of low-resistivity sands in the gulf of Mexico [J]. AAPG Bulletin, 1999, 83(1): 114-127.
[5] KARACAN C O, OKANDAN E. Adsorption and gas transport in coal microstructure: investigation and evaluation by quantitative X-ray CT imaging [J]. Fuel, 2001, 80(4): 509-520.
[6] 王生维, 陈钟惠, 张明, 等. 煤储层岩石物理研究与煤层气勘探选区及开发 [J]. 石油实验地质, 1997, 19(2): 133-138.
[7] 姚艳斌, 刘大锰, 刘志华, 等. 煤层气储层综合评价要素与评价体系 [C]∥2008年煤层气学术研讨会, 江西, 2008.
[8] 刘金霖, 李怀滨, 张雪冰, 等. 鸡西盆地煤储层孔隙特征及主控因素 [J]. 石油实验地质, 2018, 40(5): 91-98.
[9] 宁正伟. 华北地区石炭二叠系煤岩与煤层气储层物性分析 [J]. 石油实验地质, 1997, 19(1): 76-81.
[10] 姚艳斌, 刘大锰, 蔡益栋, 等. 基于NMR和X-CT的煤的孔裂隙精细定量表征 [J]. 中国科学: 地球科学, 2010, 40(11): 1598-1607.
[11] 周三栋, 刘大锰, 蔡益栋, 等. 低阶煤吸附孔特征及分形表征 [J]. 石油与天然气地质, 2018, 39(2): 171-181.
[12] MAHAMUD M M, NOVO M F. The use of fractal analysis in the textural characterization of coals [J]. Fuel, 2008, 87(2): 222-231.
[13] 姚艳斌, 刘大锰. 煤储层孔隙系统发育特征与煤层气可采性研究 [J]. 煤炭科学技术, 2006, 34(3): 64-68.
[14] 姚艳斌, 刘大锰, 汤达祯, 等. 华北地区煤层气储集与产出性能 [J]. 石油勘探与开发, 2007, 34(6): 664-668.
[15] ROUQUEROL J, AVNIR D, FAIRBRIDGE C W, et al. Recommendations for the characterization of porous solids(technical report)[J]. Pure Appl Chem, 1994, 66(8): 1739-1758.
[16] YAKOV V. A practical approach to obtain primary drainage capillary pressure curves from NMR core and log data [J]. Petrophysics, 2001, 42(2): 334-343.
[17] YAO Y B, LIU D M, CHE Y, et al. Petrophysical characterization of coals by low-field nuclear magnetic resonance(NMR)[J]. Fuel, 2009, 89(7): 1371-1380.
[18] YAO Y B, LIU D M. Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distributions of coals [J]. Fuel, 2012, 95(1): 152-158.
[19] YIXIN Z, YINGFENG S, SHIMIN L, et al. Pore structure characterization of coal by NMR cryoporometry [J]. Fuel, 2017, 190(15): 359-369.

相似文献/References:

[1]傅雪海,姜波,秦勇,等.用测井曲线划分煤体结构和预测煤储层渗透率[J].测井技术,2003,27(02):140.
 Fu Xuehai,Jiang Bo,et al..Classification of Coalbody Structure and Prediction of Coal Reservoir Permeability with Log Curves[J].WELL LOGGING TECHNOLOGY,2003,27(02):140.
[2]李振林,李戈理,程道解,等.基于核磁共振T2谱储层产水率测井评价技术[J].测井技术,2020,44(01):67.[doi:10.16489/j.issn.1004-1338.2020.01.013]
 LI Zhenlin,LI Geli,CHENG Daojie,et al.Log Evaluation Technology for Reservoir Water Production Based on NMR T2 Spectra[J].WELL LOGGING TECHNOLOGY,2020,44(02):67.[doi:10.16489/j.issn.1004-1338.2020.01.013]

备注/Memo

备注/Memo:
第一作者: 刘金立,男,1985年生,工程师,从事非常规油气测井及相关工作。E-mail:liujl25@cosl.com.cn
通信作者: 余杰,男,1984年生,硕士,高级工程师,从事非常规油气储层岩石物理与测井评价方法研究。E-mail:yujie3@cnooc.com.cn
更新日期/Last Update: 1900-01-01