ZHAO Peiqiang,CHEN Zhen,LI Weibing,et al.Joint Inversion of Saturation of Tight Sandstone Reservoirs Using Resistivity and Dielectric Logs[J].WELL LOGGING TECHNOLOGY,2022,46(02):174-181.[doi:10.16489/j.issn.1004-1338.2022.02.009]





Joint Inversion of Saturation of Tight Sandstone Reservoirs Using Resistivity and Dielectric Logs
赵培强12 陈阵3 李卫兵3 毛志强12 柯式镇12 王海朋4
(1.中国石油大学(北京)油气资源与探测国家重点实验室, 北京 102249; 2.中国石油大学(北京)地球探测与信息技术北京市重点实验室, 北京 102249; 3.中国石油长庆油田公司勘探开发研究院, 陕西 西安 710018; 4.中国石油集团测井有限公司辽河分公司, 辽宁 盘锦 124010)
ZHAO Peiqiang12 CHEN Zhen3 LI Weibing3 MAO Zhiqiang12 KE Shizhen12 WANG Haipeng4
(1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum(Beijing), Beijing 102249, China; 2. Beijing Key Laboratory of Earth Prospecting and Information Technology, China University of Petroleum(Beijing), Beijing 102249, China; 3. Exploration and Development Research Insititute, PetroChina Changqing Oilfield Company, Xi’an, Shaanxi 710018, China; 4. Liaohe Branch, China National Logging Corporation, Panjin, Liaoning 124010, China)
致密砂岩 饱和度 介电测井 电阻率测井 联合反演 粒子群算法
tight sandstone saturation dielectric logs resistivity logs joint inversion particle swarm optimization
鄂尔多斯盆地三叠系延长组致密砂岩储层具有地层水矿化度变化大、孔隙结构复杂、泥质含量较高等特点,含油饱和度评价困难。然而,致密储层钻井液侵入较浅,且多频介电测井蕴含地层水矿化度等信息,为饱和度评价提供了有利条件。基于阵列感应电阻率曲线以及介电测井4种频率的介电常数曲线和电导率曲线,提出一种联合电阻率测井和介电测井信息反演储层含油饱和度的方法。根据储层性质选择模型构建目标函数,电阻率测井响应采用西门杜方程,介电测井1 GHz频率下测量的介电常数和电导率使用复折射率模型,20~500 MHz频率测量的介电常数和电导率采用泥质砂岩响应模型。利用粒子群优化算法对目标函数进行寻优反演,并构建实例检验算法。将该方法应用于目标储层,获得饱和度、水相曲折度指数、冲洗带矿化度及泥质频散项体积含量。结果显示理论测井响应曲线和实际测井曲线的相对误差小于10%,计算的含油饱和度与岩心分析、试油数据吻合较好,表明该方法反演的参数结果有效、可靠,具有推广应用价值。
The tight sandstone reservoirs of Yanchang formation of Triassic in Ordos basin are characterized by large variation of formation water salinity, complex pore structure, and high shale content, which makes it difficult to evaluate oil saturation. The shallow mud invasion in tight reservoir, and water salinity indicated by multi-frequency dielectric logs provide a feasible method for saturation evaluation. Based on the array induction resistivity logs and the permittivity and conductivity logs of dielectric logging at four frequencies, a joint inversion method for reservoir oil saturation by resistivity and dielectric logs is proposed. Response equations are chosen to construct the misfit function based on reservoir properties. Simandoux equation is used for resistivity log. Complex refractive index model is used for permittivity and conductivity measured from dielectric logging at 1 GHz, and shaly sandstone model is used for permittivity and conductivity from dielectric logging in 20~500 MHz frequency band. The particle swarm optimization(PSO)algorithm is used to optimize the objective function, and examples are constructed to test the algorithm. The method is applied to the target reservoir to obtain saturation, tortuosity index of water phase, salinity of flushing zone, and volume content of shale dispersive phase. The results show that the relative error between the synthetic log response and the measured log is less than 10%, which indicates that the inversion parameters of this method are effective and reliable. Furthermore, the calculated oil saturation is in good agreement with the core analysis and oil test data, which verifies the accuracy of the method. This method has the value of popularization and application.


[1] 康毅力, 罗平亚. 中国致密砂岩气藏勘探开发关键工程技术现状与展望 [J]. 石油勘探与开发, 2007, 34(2): 239-245.
[2] 杨华, 李士祥, 刘显阳. 鄂尔多斯盆地致密油、页岩油特征及资源潜力 [J]. 石油学报, 2013, 34(1): 1-11.
[3] 郭彦如, 刘俊榜, 杨华, 等. 鄂尔多斯盆地延长组低渗透致密岩性油藏成藏机理 [J]. 石油勘探与开发, 2012, 39(4): 417-425.
[4] 李易隆, 贾爱林, 何东博. 致密砂岩有效储层形成的控制因素 [J]. 石油学报, 2013, 34(1): 71-82.
[5] 冯程, 樊海涛, 石玉江, 等. 润湿性影响下低渗透储层地层水矿化度预测: 以鄂尔多斯盆地陇东地区三叠系延长组长81段为例 [J]. 石油与天然气地质, 2020, 41(2): 442-448.
[6] GUO H, ZHANG H, LI G, et al. Prediction of water saturation for tight sandstone reservoirs by using array dielectric logging ADL [C]∥SPE Gas & Oil Technology Showcase and Conference, Dubai, UAE, 2019.
[7] 洪有密. 测井原理与综合解释 [M]. 东营: 中国石油大学出版社, 2007.
[8] ZHAO P, FU J, SHI Y, et al. Hydrocarbon saturation in shale oil reservoirs by inversion of dielectric dispersion logs [J]. Fuel, 2020, 266: 116934.
[9] SELEZNEV N V, KLEINBERG R L, HERRON M M, et al. Applications of dielectric dispersion logging to oil shale reservoirs [C]∥SPWLA 52nd Annual Logging Symposium, Colorado Springs, Colorado, 2011.
[10] MUSHARFI N, ALMARZOOQ A, EID M, et al. Combining wireline geochemical, NMR, and dielectric data for formation evaluation and characterization of shale reservoirs [C]∥SPWLA 53rd Annual Logging Symposium, Cartagena, Colombia, 2012.
[11] ALMARZOOQ A, ALGHAMDI T, SASSI K H, et al. Characterization of shale gas rocks using dielectric dispersion and nuclear magnetic resonance [C]∥SPE Saudi Arabia Section Technical Symposium and Exhibition, AI-Khobar, Saudi Arabia, 2013.
[12] CHEN H, HEIDARI Z. Pore-scale joint evaluation of dielectric permittivity and electrical resistivity for assessment of hydrocarbon saturation using numerical simulations [J]. SPE Journal, 2016, 21(6): 1930-1942.
[13] BIRCHAK J R, GARDNER C G, HIPP J E, et al. High dielectric constant microwave probes for sensing soil moisture [J]. Proceedings of the IEEE, 1974, 62(1): 93-98.
[14] HAN Y, MISRA S, SIMPSON G. Dielectric dispersion log interpretation in Bakken petroleum system [C]∥SPWLA 58th Annual Logging Symposium, Oklahoma, Oklahoma, USA, 2017.
[15] SABOUROUX P, BA D. Epsimu, a tool for dielectric properties measurement of porous media: application in wet granular materials characterization [J]. Progress in Electromagnetics Research B, 2011, 29(29): 191-207.
[16] STROUD D, MILTON G W, DE B R. Analytical model for the dielectric response of brine-saturated rocks [J]. Physical Review B, 1986, 34(8): 5145.
[17] MISRA S, TORRES-VERDíN C, REVIL A, et al. Interfacial polarization of disseminated conductive minerals in absence of redox-active species—Part 1: mechanistic model and validation [J]. Geophysics, 2016, 81(2): E139-E157.
[18] TATHED P, HAN Y, MISRA S. Hydrocarbon saturation in Bakken petroleum system based on joint inversion of resistivity and dielectric dispersion logs [J]. Fuel, 2018, 233: 45-55.
[19] TATHED P, HAN Y, MISRA S. Hydrocarbon saturation in upper Wolfcamp shale formation [J]. Fuel, 2018, 219: 375-388.
[20] WAXMAN M H, SMITS L J M. Electrical conductivities in oil-bearing shaly sands [J]. SPE Journal, 1968, 8(2): 107-122.
[21] HAN Y, MISRA S, WANG H, et al. Hydrocarbon saturation in a Lower-Paleozoic organic-rich shale gas formation based on Markov-chain Monte Carlo stochastic inversion of broadband electromagnetic dispersion logs [J]. Fuel, 2019, 243: 645-658.
[22] ZHAO P, ZHUANG W, SUN Z, et al. Methods for estimating petrophysical parameters from well logs in tight oil reservoirs: a case study [J]. Journal of Geophysics and Engineering, 2016, 13(1): 78-85.
[23] HAN M, CUADROS J, SUAREZ A P, et al. Continuous estimate of cation exchange capacity from log data: a new approach based on dielectric dispersion analysis [C]∥SPWLA 53rd Annual Logging Symposium, Cartagena, Colombia, 2012.
[24] SIMANDOUX P. Dielectric measurements on porous media, application to the measurements of water saturation: study of behavior of argillaceous formations [J]. Revue de L’Instiut Francais du Petrol, 1963, 18(S1): 193-215.
[25] EBERHART R, KENNEDY J. A new optimizer using particle swarm theory [C]∥Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995.
[26] POLI R. Analysis of the publications on the applications of particle swarm optimisation [J]. Journal of Artificial Evolution and Applications, 2008(3): 1-10.
[27] 孙茹雪, 潘保芝, 段亚男, 等. CM与PSO方法评价中基性火山岩矿物组份对比 [J]. 物探化探计算技术, 2016, 38(2): 206-211.
[28] 孙湘, 周大为, 张希望. 惯性权重粒子群算法模型收敛性分析及参数选择 [J]. 计算机工程与设计, 2010, 31(18): 4068-4071.
[29] 赵培强, 李长文, 沙峰, 等. 滨里海盆地东缘中区块碳酸盐岩储层渗透率预测研究 [J]. 石油科学通报, 2020, 5(1): 39-48.
[30] LIU S, LIANG M, HU X. Particle swarm optimization inversion of magnetic data: field examples from iron ore deposits in China [J]. Geophysics, 2018, 83(4): J43-J59.


 ZHANG Jinyan,SUN Jianmeng.Log Evaluation on Shale Hydrocarbon Reservoir[J].WELL LOGGING TECHNOLOGY,2012,36(02):146.
[3]赵辉,司马立强,戴诗华,等.利用纵横波速度判别火成岩气、水层的 理论基础及应用[J].测井技术,2012,36(06):602.
 ZHAO Hui,SIMA Liqiang,DAI Shihua,et al.The Theoretical Principle and Application of Distinguishing Igneous Gas and Water Layers Using vp/vs[J].WELL LOGGING TECHNOLOGY,2012,36(02):602.
 Wu Yuntong..RMT Logging Technology and Its Application in Determination of Potential Remaining Oil in Block Oilfield.[J].WELL LOGGING TECHNOLOGY,2003,27(02):41.
 ZHANG Shu-dong.On Deep & Shallow Laterolog Data Interpretation of Complex Carbonate Reservoir with High Resistivity[J].WELL LOGGING TECHNOLOGY,2005,29(02):33.
 QIU Guang-jun,WANG Li,LIU Zhong-qi.An Invasion Correction Method For Induction Resistivity Logging[J].WELL LOGGING TECHNOLOGY,2005,29(02):205.
 YU Bin,YAN Dong-dong,LI Tian-jiang.Digitizing Diagram of NMR Log to Model Porosity/Permeability Calculated with Conventional Logs[J].WELL LOGGING TECHNOLOGY,2008,32(02):41.
 CHENG Zhigang,ZHANG Lei,ZHAO Jianwu,et al.Gas Evaluation in Tight Sand Reservoir Using Acoustic Characteristics of Rock[J].WELL LOGGING TECHNOLOGY,2013,37(02):253.


基金项目: 国家自然科学基金“含导电矿物页岩油储层兆赫兹频段介电响应机理及饱和度评价”(42004087)
第一作者: 赵培强,男,1988年生,副教授,博士,从事岩石物理与测井储层评价。E-mail:pqzhao@cup.edu.cn
更新日期/Last Update: 1900-01-01